Highlights

4 The SOE symposium emphasized that early discovery of visual abnormalities like strabismus is critical in getting best prognostic outcomes.

6 A panel of experts discussed the latest updates in the ongoing trials on DME and anti-VEGF agents.

10 The Jose Rizal International Medal lecture and subsequent talks honed in on childhood eye tumors and recommended ways of best managing the conditions.

Arthur Lim Lecture Awardee Prof. Ava Hossain Continues Legacy in Blindness Prevention

by Gloria D. Gamat

Recognizing the contribution and legacy of Professor Arthur Lim Siew Ming, ‘father of ophthalmology’ in the Asia-Pacific Region and founder of the Asia-Pacific Association of Cataract and Refractive Surgeons (APACRS), the Arthur Lim Lecture Award at the 31st Asia-Pacific Academy of Ophthalmology Congress (APAO 2016) was given to Professor Ava Hossain, M.D., Ph.D., respected ophthalmologist not just in Bangladesh, but in the Southeast Asian region as well.

During the symposium session on challenges and opportunities of blindness prevention in the Asia-Pacific region, Prof. Hossain talked about the blindness prevention scenario under the National Eye Care Program of Bangladesh.

The said program, which Prof. Hossain helped developed herself, was established by the Government of Bangladesh as a participant in Vision 2020 – the global campaign for elimination of avoidable blindness by 2020.

Bangladesh’s national eye care plan focuses on effective public health policy and practice and has contributed to decreasing the huge backlog in treatable blindness due to cataract.

Further, three major areas of disease control have been prioritized in this eye care plan: cataract surgery, childhood blindness prevention, correction of refractive errors and low vision while at the same time recognizing the need to pay attention to subspecialty services such as those for cornea, retina, glaucoma, etc. as emerging priorities.

Prof. Hossain’s contribution to this program is truly noteworthy. Along with her team, they have organized screening programs in rural areas covering about 100 million people and conducted IOL implantation on about 168,200 eyes in the last 33 years.

Also working in the field of ocular trauma, Prof. Hossain and her team have developed an innovative manual that highlights awareness and behavioral change as key factors in the prevention of ocular trauma and eye protection. Today, the manual is widely used by the primary eye care providers in Bangladesh.

Indeed, Prof. Hossain is following the examples of Prof. Arthur Lim as evident in his famous words: “If you operate on one man, you restore vision to one man, but if you teach your colleagues how to perform quality cataract surgery, they will solve the problem of cataract blindness in the world.”

Arthur Lim Lecture Awardee Prof. Ava Hossain

Continues Legacy in Blindness Prevention

The Official Congress News of APAO 2016

Issue 3

Published by:

media MICE
Nimble media makers for you

Editorial Team
Creative Content Director
Matt Young
Chief Editor
Gloria D. Gamat
Project Manager
Ruchi Mahajan Ranga
Writers
Olawale Salami
Claire Noonan
Helin Räägel
Designers
Winson Chua
Edison Tan
Photographer
Dwayne Foong

Media MICE Pte. Ltd.
6001 Beach Road, #19-06
Golden Mile Tower,
Singapore 199589
Tel: +65 8186 7677
Fax: +65 6298 6316
Email: enquiry@mediamice.com
www.mediAMICE.com

Delegates experienced world-class entertainment yesterday at the APAO Gala Dinner.
EYLEA® 采視明®
已核准3 項適應症

健保給付103年8月1日正式生效

適用於治療血管新生型 (溼性) 年齡相關性黃斑部退化病變。

中央視網膜靜脈阻塞(CRVO)續發黃斑部水腫所導致的視力損害。

糖尿病黃斑部水腫(DME)所導致的視力損害。

Eylea適應症
- 適用於治療血管新生型 (溼性) 年齡相關性黃斑部退化病變。
- 中央視網膜靜脈阻塞(CRVO)續發黃斑部水腫所導致的視力損害。
- 糖尿病黃斑部水腫(DME)所導致的視力損害

劑量與投藥方式
Eylea的建議劑量為2 mg aflibercept (相當於50微升)
- 血管新生型(溼性)年齡相關性黃斑部退化病變(wAMD)
- Eylea開始治療時為前3個月每個月注射1次，4-12週接受1次治療

中央視網膜靜脈阻塞(CRVO)續發黃斑部水腫
- 每個月注射1次；熟成試驗中，約6個月為每個月注射，大部分的進步出現在前3個月
- 診療必須持續並依視力和/或解剖學結果延長治療間隔，但首3個月後

足夠的證據決定延長多久的治療間隔。正常情況下，應於注射採訪時做監測。
- 治療需延長至完成治療期間。臨床治療目標為依據病患個別的反應來決定

糖尿病黃斑部水腫(DME)所導致的視力損害
- Eylea治療開始時為每個月注射1劑，連續注射5劑，之後則為每個月注射1劑
- 若視力與結構結果顯示病患因持續治療而受益，應停用Eylea

禁忌
- 禁止於對活性物質aflibercept或本產品任何賦形劑過敏的病患。本
- 引起或增強眼部或眼周感染。活動性重度眼內發炎。

警示與注意事項
- 玻璃體內注射相關反應(眼內壓升高)、致免疫原性及全體性反應(包括非眼球出血
- 與類球液體積事件)
- 最常見的不良反應(至少5%的EYLEA治療病患)為結膜出血(25.0%)，眼壓升高(10.2%)、白內障(7.5%)、眼內壓升高(7.5%)、玻璃體剝離(7.4%)與玻璃體漂浮物(6.5%)。
Conventional methods of screening and assessment of peripheral retinal diseases, such as diabetic retinopathy, retinal vein occlusions, choroidal masses and vasculitis, have relied upon the use of images obtained from normal angle fundus cameras. However, with recent methods incorporating widefield and ultra-widefield (UWF) fundus and OCT imaging, a wider area of the retina can be imaged with fewer images, and with less dependence on a photographer’s experience and skills. Widefield images can detect peripheral pathology not typically seen in standard photographs, which could certainly broaden our understanding of disease severity and guide new indications for treatment.

The epidemiology of diabetes mellitus is rapidly changing, and consequent upon the increasing prevalence of diabetes mellitus, the demand for diabetic retinopathy (DR) screening platforms has risen sharply in recent years. Early detection and treatment of DR are key public health interventions that have the potential to greatly reduce the likelihood of preventable loss of vision.

How SPECTRALIS OCT fits in the retinal imaging picture

Currently, hospital based DR screening programs typically employ retinal fundus photography, which relies on skilled and experienced readers for manual DR screening. However, this is labor-intensive and suffers from inconsistency across sites. Hence, there has been a recent proliferation of retinal image analysis platforms, such as the SPECTRALIS (Heidelberg Engineering, Heidelberg, Germany), that may potentially alleviate this burden in a cost-effective manner. Furthermore, conventional screening programs that rely on 2-dimensional fundus photography do not effectively screen for diabetic macular edema (DME). Optical coherence tomography (OCT) is becoming increasingly recognized as the reference standard for DME assessment and can potentially provide a cost-effective solution for improving DME detection in large-scale DR screening programs. Current screening techniques also are unable to image the peripheral retina, and require pharmacological pupil dilation; ultra-widefield imaging and confocal scanning laser ophthalmoscopy, which address these important drawbacks, are urgently needed as effective screening and diagnostic tools.

The Widefield Imaging Module available on the SPECTRALIS multimodal platform provides the standard field of view of a mydriatic fundus camera for all SPECTRALIS fundus and OCT imaging modalities, simplifying diagnostic protocols and facilitating detection of peripheral pathology.

The SPECTRALIS Ultra-Widefield Angiography Module captures an extremely wide field-of-view in one shot. It delivers evenly illuminated, undistorted, high-contrast images even in the periphery. The Module is compatible with SPECTRALIS® high-speed video angiography, ultra-widefield fluorescein and ICG angiography and can be performed as single procedures or simultaneously. The non-contact design makes peripheral imaging with the Ultra-Widefield Angiography Module convenient for both patient and operator. This easy-to-use module further extends the broad range of the SPECTRALIS imaging platform.

References:
In their lecture presentations, Dr. Yair Morad (Tel Aviv University, Israel), Dr. Miho Sato (Hamamatsu University School of Medicine, Japan), and Dr. Takashi Negishi (Juntendo University Faculty of Medicine, Japan) all described different possible ways to surgically interfere with and treat patients affected with strabismus.

Shortly, during the procedure, an incision is made to the eye to expose the ocular muscles responsible for eye fixation, and the muscles are surgically tied together to correct for the ocular positioning. Dr. Sato suggested in her talk the utilization of simultaneous two-muscle surgery to acquire best results during the operation. However, the number of cases used in her study is too small to make detailed data comparison between the optimum outcomes of either a single or a combinatorial muscle surgery.

Dr. Negishi, on the other hand, emphasized the importance of performing a radial incision during surgery to prevent excess damage and distress to the eye. This issue was also brought up by Dr. Bing-Herng Shen (Ophthalmological Society of Chinese Taipei), who highlighted the different causes of trauma possibly leading to myotoxic effects either by damaging a nerve in the process or creating toxic conditions through anesthesia, exposure to toxins during surgery, among others. He stressed that every ophthalmologist, no matter where they are from, whether from the east or the west, from the past or present, will have to face the issue of complications of undesired toxicity during the procedure. We can only hope that progress made in techniques can minimize this in the future.

As a complementary analysis, Dr. Giovanni Marcon (Dr. Giovanni Battista Marcon Eye Care Center, Italy) proposed the application of magnetic resonance imaging (MRI) analysis to assess and diagnose the size and features of the specific intraocular muscles before any steps of surgery are taken. Preliminary data from his studies indicate that MRI is an important tool in characterizing the pre- and post-operative state of these muscles, and could provide a valuable guideline for determining whether surgery should or should not be utilized.

Dr. Boon Long Quah (SNEC, Singapore) presented the importance of non-surgical intervention, especially in children younger than 10 years of age. He showed data demonstrating that non-surgical approaches like part-time occlusion or partial patching, and the use of special eyewear can have a significant impact on the outcome of the treatment for children between ages of 3 and 10 years. Nevertheless, the condition may return later on, and 50% of the children affected will eventually need to undergo surgical intervention. Based on his findings, he proposed a decision tree for clinical use for evaluating and determining whether a patient needs surgery, and if yes, a chart to help to identify the appropriate surgery for the condition.

As vision is a key component to perceiving the world around us, all speakers of this session agreed that early discovery of any abnormalities in vision can lead to the best outcomes for prognosis. Therefore, they encouraged the patients to pay close attention to their own and their children’s vision and turn to their doctor as soon as signs of aberration occur.
Symposium in Focus: Therapy Options and Healthcare Cost of Uveitis

by Helin Räägel

The main goal in uveitis treatment today is finding durable corticosteroid-free replacement therapies for patients affected by this disease. Although there are regional differences in the first-order therapeutics used to treat it, corticosteroids are still currently the most commonly used treatment strategy for uveitis, especially in Europe. During the course of treatment patients receive continuing doses either topically, regionally or systemically.

Dr. Timothy Lai (The Chinese University of Hong Kong) addressed this issue and stated that due to the potential for local or systemic side effects, including an increase in intraocular pressure and cataract formation, corticosteroids should only be administered for acute management of active uveitis. For all other cases, alternative methods or drugs (i.e. immunosuppressive agents or biologics) should be utilized.

Dr. Nobuyoshi Kitaichi (Hokkaido University, Japan) demonstrated the different strategies used in different countries and highlighted that even though Asian region uses less corticosteroids, and more colchicine as the primary choice for treatment, patient data indicates that the latter might not be strong enough on its own to eliminate the effects of uveitis since patients went blind after 3 years despite receiving treatment.

Due to this, they carried out a research study in Japan, using infliximab (IFX), a chimeric monoclonal antibody biologic drug that works against tumor necrosis factor alpha (TNF-α), and suppresses the immune reaction. A large portion of patients receiving this treatment displayed improved outcomes, especially the ones with severe ocular attacks. They also reported that the interval between IFX injections should be decreased for optimal outcomes, and proposed a new guideline for treatment of uveitis: the first-line drug should be colchicine/corticosteroids/azathioprine. If the patient is non-responsive, then cyclosporine should be used in conjunction. Finally, IFX should be used as a third line of treatment, especially in severe active cases, where the cyclosporine step should be omitted entirely.

The choice of treatment does not, unfortunately, only lie in the development of optimal protocols. A number of issues arise from the availability and also the cost of these therapeutic agents. This is especially true for biologic drugs such as IFX. Thus, studies showing the increased cost-efficacy relationships need to be performed to critically review current treatment plans and policy. To accomplish this, large cohort studies on the incidence of the disease regionally as well as the proper analysis of the total costs of alternative treatment plans need to be carried out. Dr. Chang-ping Lin (National Taiwan University Hospital, Taiwan) and Dr. De-Kuang Hwang (Taichung Veterans General Hospital, Taiwan) described the population studies carried out in Taiwan to assess the risk factors of causes of uveitis and the prognosis in order to, in the future, set up specific guidelines for biopsy characterization and laboratory procedures to create a uniform system to identifying the severity of the disease in patients. Moreover, Dr. David Chu (Metropolitan Eye Research & Surgery Institute, New York, USA) charted the results of a study carried out in United States with data from commercial insurance companies to compare patient costs for alternative uveitis treatments (corticosteroid versus immunosuppressive agents versus biologic agents). Results clearly demonstrate that despite the fact that biologic agents are more costly, the total cost of patient treatment excluding the cost of drugs themselves significantly decreased, translating to a better care for the patients in the long run.

All in all, ophthalmologists need to realize that uveitis is a long-term life-altering illness that has been shown to have a similar financial and economic burden on society as diabetes or cancer. Therefore, to conquer the effects of this disease, clinicians and clinical researchers and all stakeholders in the ophthalmic world need to work together to develop optimal and affordable care options for the patients.

Dr. Nobuyoshi Kitaichi
Delegates at the Bayer symposium at the 31st Asia-Pacific Academy of Ophthalmology Congress (APAO 2016) heard the latest updates in trials for the treatment of vision impairment due to diabetic macular edema with anti-vascular endothelial growth factor (anti-VEGF) agents.

Professor Susan Bressler, M.D., Ph.D., Professor of Ophthalmology at the Johns Hopkins University School of Medicine in Baltimore, opened the session with an overview of the trial data. She explained that it is very clear that first line therapy for diabetic macular edema should be an anti-VEGF agent.

"A wealth of data is available to us," she said. She cited the VIVID and VISTA studies.

"Over and over, rapid early impressive improvement in acuity are seen, that plateau by one year and are sustained at two years," she explained.

Professor Young Hee Toon, M.D., of the Asian Medical Centre and University of Ulsan College of Medicine in Seoul, explained that the VIVID East and VISTA Japan trials have replicated the results from the VIVID and VISTA trials, with even better results with aflibercept seen in VIVID East.

Aflibercept leads to a 13-letter improvement in visual acuity at the end of 52 weeks and was far superior to laser in improving outcomes that were sustained over time. Functional benefits were also demonstrated with patients, noting improvement in near and distance activities.

The safety profile was similar between anti-VEGF agents.

Professor Bressler illustrates the decision making process of agent choice and dose frequency with a patient case of an 84-year-old man who presented with macular edema and cataract in his better eye; visual acuity was 20/63.

The Diabetic Retinopathy Clinical Research Network Protocol T results showed that patients randomly assigned to aflibercept had sustained superior outcomes. "Based on this information I reach for aflibercept to treat this gentleman," said Professor Bressler.

Injections were commenced, and the patient returned monthly for VA/OCT. As the patient continued serial injections, his visual acuity actually worsened at one stage, though OCT was reassuring in showing anatomical improvement.

Eventually, after a total of 11 serial injections of aflibercept, visual acuity did improve to 20/40, along with impressive improvement on OCT.

In view of the delayed improvement, Professor Bressler said there is a group of patients that tend to be late responders, but that when treatment rewards eventuate, they can be substantial.

When choosing an agent, despite the evidence, practitioners may be confined to what is available and rebatable in their region, and by what their patients can afford.

Professor Bressler advised approaching policy makers with the data, to get limitations relaxed and patient options broadened.

When designing dosage regimens, patient choice and compliance needs to be taken into account. Professor Bressler pointed out that in the VIVID and VISTA trials, patients who received 8-weekly injections after a loading phase of monthly doses are doing as well as those patients coming in monthly.

Rescue laser may be required in some cases and with some agents, though is less often indicated with aflibercept. Adding laser leads to more retinal thinning but not necessarily improved visual acuity. Thinning is desired, but only to an extent.

As Professor Bressler said: “You can never be too rich or too thin - unless you’re the macula, then you can be too thin.”
EYLEA®采視明®
已核准3項適應症

健保給付
103年8月1日正式生效

適用於治療血管新生型(溼性)年齡相關性黃斑部退化病變。

中央視網膜靜脈阻塞(CRVO)續發黃斑部水腫所導致的視力損害。

糖尿病黃斑部水腫(DME)所導致的視力損害。

Eylea適應症
‧適用於治療血管新生型(溼性)年齡相關性黃斑部退化病變。
‧中央視網膜靜脈阻塞(CRVO)續發黃斑部水腫所導致的視力損害。
‧糖尿病黃斑部水腫(DME)所導致的視力損害。

劑量與投藥方式
Eylea的建議劑量為2 mg aflibercept(相當於50微升)。

血管新生型(溼性)年齡相關性黃斑部退化病變(wAMD)
‧Eylea開始治療時為前三個月每個月注射1次，連續注射3次，之後則為每2個
月注射1次。患者於治療一年後，若病情需要，建議注射方式為每4-12週接受
1次治療。

中央視網膜靜脈阻塞(CRVO)續發黃斑部水腫
‧每個月注射1次；樞紐試驗中，前6個月為每個月注射，大部分的進步出現在前
3個月。治療必須持續並依據視力和/或解剖學結果延長治療間隔，但目前沒有
足夠的證據決定延長多久的治療間隔。正常情況下，應於注射採訪時做監測。
治療期間延長至完成治療期間，臨床治療醫師應依據病患個別的反應來決定
監測時程。

糖尿病黃斑部水腫(DME)所導致的視力損害
‧Eylea治療開始時為每個月注射1劑，連續注射5劑，之後則為每2個月注射1劑。
若視力與解剖結果顯示病患未因持續治療而受益，應停用Eylea。

禁忌
禁用於對活性物質aflibercept或本產品任何賦形劑過敏的病患。
活動性或疑似眼部或眼周感染。活動性重度眼內發炎。

警語與注意事項
玻璃體內注射相關反應(眼內壓升高)、致免疫原性及全身性反應(包括非眼球出血
及動脈血栓栓塞事件)。

最常見的不良反應(至少5%的EYLEA治療病患)為結膜出血(25.0%)、眼睛疼痛(10.2%)、
白內障(7.6%)、眼內壓升高(7.5%)、玻璃體剝離(7.4%)與玻璃體漂浮物(6.9%)。
Past decades have provided an explosive advancement in the field of imaging of the capillary network of the eye, and this in turn has made it possible and increasingly cost-wise accessible to a growing number of patients.

Professor Dr. Edoardo Midena, M.D., Ph.D., introduced the optical coherence tomography angiography (OCT-A) technique that uses light to capture micrometer-resolution, three-dimensional images from the patient’s eye. Contrary to the classic imaging, this technique does not require the use of dyes, and enables the clinicians to evaluate the completeness and intactness of the vascular system as well as the thickness of individual capillaries. He also emphasized that this method allows clinicians to acquire more detailed three-dimensional images from abnormalities.

The plaques of fibrosis developed inside a patient’s eye can easily be overlooked or underestimated for their severity with conventional modes of analysis such as indocyanine green angiography (ICGA) or fluorescein angiography (FA).

Another attractive approach for visualizing the complex structures of the eye is multicolor (MC) imaging. Dr. Shozo Sonoda, M.D., called this the merging of the two worlds, combining the best attributes of both OCT (with better deep tissue imaging quality) and standard fundus microscopy (clear imaging of the surface). MC imaging uses three different wavelengths, each having specific focus depth, providing ultimate resolution across the tissue and as a result, a complete topography of the eye. This way, more information can be obtained with more accuracy, and greater depth of detail.

A number of early onset aberrations in the intraocular vasculature go undetected due to technological limitations in imaging the peripheral regions of the eye. The latest developments in the SPECTRALIS system (Heidelberg Engineering, Germany) allow at least a 100-degree imaging with the ultra-widefield (UWF) imaging method, says Dr. Lihteh Wu, M.D. This system promises less peripheral distortion, less artefacts from eyelids and lashes, and as a result grants an enhanced image quality and area coverage. He also pointed out the necessity for image correction when dealing with three-dimensional datasets that have been mapped to two-dimensional images, with overestimation of sizes of specific regions on the image, just like in the two-dimensional world map.

All of the speakers in this session stressed that the available and ever advancing technologies for imaging should not just be used for diagnosis, but should become an integral part for monitoring the efficacy of eye treatment over longer periods of time. Due to their increasing time- and cost-effectiveness, as well as the non-invasive nature of the procedure, it might just be the case in the near future.

However, it is important to highlight that more data needs to be acquired to define the “normal” versus the “diseased” states of vascular networks associated with different diseases before any of the models from the imaging data can be successfully applied to the treatment of patients. Nevertheless, it looks like image-based diagnostics is going to be one of the key components in fighting eye disorders in the future.
Now accepting manuscript submissions!

Editor-in-Chief: Dennis Lam, MD

The Asia-Pacific Journal of Ophthalmology (APJO) is an online only, bimonthly peer-reviewed, Medline-indexed, scientific publication for ophthalmologists and Visual scientists. With a View to facilitating exchange of expertise among ophthalmologists and visual scientists in the Asia-Pacific region and beyond and encouraging research and publications in the region, the Asia-Pacific Journal of Ophthalmology serves as an excellent platform where eye care specialists in the Asia-Pacific region can interact with leading ophthalmologists in the world.

The APJO welcomes the submission of original, previously unpublished manuscripts which describe clinical investigations, clinical observations and clinically relevant laboratory investigations as well as critical review articles on currently hot topics.

To submit manuscript to the Asia-Pacific Journal of Ophthalmology, visit: www.editorialmanager.com/apjo
The session on childhood tumors of the eye at the 31st Asia-Pacific Academy of Ophthalmology Congress (APAO 2016) opened with the Dr. Jose Rizal International Medal lecture, given by Dr. Jerry Shields, M.D., co-director and founder of the Wills Eye Hospital Philadelphia Ocular Oncology Service.

He shared some fascinating cases of iris tumors, pseudotumors and cysts with the delegates present. One case involved congenital multiple bilateral cysts flocculi in a young man. Later in life the man had a thoracic aortic aneurysm and aortic dissection. The two conditions were not unrelated. The patient had a genetic mutation affecting smooth muscle cells.

Dr. Shields recommends close monitoring of patients with iris flocculi. Some may warrant genetic testing.

The session topic turned to retinoblastoma and Dr. Carol Shields, M.D., ocular oncologist and co-director at the Wills Eye Hospital, Philadelphia, spoke about developments in retinoblastoma treatment, with preferred management changing from a decade-long tradition of enucleation, to today’s intra-arterial chemotherapy (IAC). IAC yields pleasing results, particularly for unilateral disease. Dr. Shields noted: “It is mostly with greater, more advanced disease that IAC provides more control for retinoblastoma.”

An additional benefit is that patients may be cured after only one or two doses. However, the side effects can be serious, emphasized Dr. Shields. “We are dealing with potent agents,” he said. There is disagreement among specialists as to preference for management, but there is widespread agreement that retinoblastoma is now the ‘most curable’ pediatric cancer.

Dr. An Ning Chao, M.D. of the Chang Gung Memorial Hospital in Taiwan, described how globe salvage rate varies with region and expertise, with a 15% salvage rate for group E in Taiwan compared with 36% at the Wills Eye Hospital. She reminded the session that enucleation is still indicated for advanced cases and can be life-saving.

Further, Dr. Carol Shields agreed that there is a role for enucleation and that treatment options vary with location and resources. “I think retinoblastoma treatment is a real art and a science; it’s not a recipe,” she added.
全新隆重推出
黄斑区退化病变救星
100% AREDS-2
配方正式进入大陆市场

针对黄斑区退化病变治疗的Macutec每日一次AREDS-2配方，已正式在大陆市场上线，并借由网路销售方式，让大陆消费者直接购买。

眼科医生与眼科专家可建议其患有黄斑区退化病变的患者，轻松上网（www.macutec.cn）订购Macutec每日一次，我们会直接透过京东全球购递送到订购者家中。

同时，我们也提供放置于您诊所中的患者手册。如有需要，请寄电子邮件到info@macutec.com.au，我们会直接寄送给您。

www.macutec.cn
The SPECTRALIS® system is an ophthalmic imaging platform with an upgradable, modular design. This platform allows clinicians to configure each SPECTRALIS to the specific diagnostic workflow in the practice or clinic.

Options include: OCT, multiple laser fundus imaging modalities, widefield and ultra-widfield modules, scanning laser angiography and OCT angiography*.

Download eBooks for free! Get a voucher at our Booth.

*Currently under development, not for sale yet.